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Conditions for propagation of a pressurized crack within a rubber-like solid are derived in terms of 
the elastic properties of rubber, the fracture energy Gc and the initial radius ro of the crack. 
A previously proposed criterion, that the critical internal pressure Pc for crack growth is given by 
5E/6, where E is the tensile (Young) modulus of elasticity, is shown to be inadequate both for 
small cracks, when the stiffening of rubber at high strains must be taken into account, and for large 
cracks, when the critical degree of inflation is so small that the assumptions leading to Pc = 5E/6 
do not apply. However, this simple criterion is found to remain a useful guide for cracks having 
initial radii lying in an intermediate range,such that roE/Gc lies between about 0.0005 and 1. For 
representative rubber-like solids, this corresponds to the range ro = 0.5 Ixm to 1 mm. 

1. In troduc t ion  
If a spherical cavity in a rubber-like solid is subjected 
to internal pressure it will expand in a highly non- 
linear way. For  a material obeying the simple kinetic 
theory of rubber elasticity, the relation between inflat- 
ing pressure P and expansion ratio k of the cavity 
radius (Fig. la) is 

P/E = (5 - 4X -1 - X-4)/6 (1) 

where E is Young's modulus of elasticity of the rubber 
at small tensile strains [1,2-]. This relation is also 
a reasonably good guide for materials showing some- 
what more complex elastic behaviour [2]. It predicts 
that, at a critical inflation pressure Pc, given by 5E/6, 
the cavity will expand without limit. In practice, it will 
tear open to form an internal crack when the max- 
imum extensibility of the rubber is reached. 

We now examine the hypothesis that rubber-like 
solids contain small cavities that develop into internal 
cracks as a result of elastic expansion. Note that Equa- 
tion 1 does not contain the initial radius of the cavity, 
so that the actual size is not important at this point. 
Several observations suggest that this concept is valid. 
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Figure 1 (a) Sketch of an inflated spherical void; (b) spherical void 
in a medium under a far-field triaxial tension (negative pressure) 
of - P. 
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When rubber blocks are supersaturated with high- 
pressure dissolved gases or liquids and the super- 
saturation pressure exceeds 5E/6, then visible bubbles 
appear in the interior [3, 4]. Each bubble corresponds 
to an internal crack. Whenever a local dilatant stress 
(triaxial tension or negative hydrostatic pressure) of 
5E/6 is set up in rubber, then large internal cracks 
appear [2, 5-7]. (For incompressible materials, like 
rubber, a dilatant stress acting at a distance is equiva- 
lent to a pressure of the same magnitude acting within 
a cavity, Fig. 1). Thus, there is a considerable body of 
evidence that rubber-like solids contain small cavities, 
and that these cavities develop into large internal 
cracks when a critical pressure or dilatant stress of 
5E/6 is set up. 

However, when the volume of material under 
dilatant stress is small, the critical value seems to be 
larger than 5E/6 [5, 6]. And, in general, when a larger 
stress than this is applied, more cracks appear [3]. 
These observations suggest that rubber-like solids 
contain cavities with a wide range of sizes, the smaller 
ones requiring a larger pressure or stress to grow into 
visible bubbles or cracks. Only the largest ones will 
become cracks at a stress of 5E/6. 

One possible reason that higher stresses are neces- 
sary to cause growth of smaller voids is that  surface 
energy provides an additional restraint upon expan- 
sion; a factor which becomes more important for small 
voids with relatively high surface areas. An extra term 
appears on the right-hand side of Equation 1, 2y/Er, 
where 7 is the surface energy of rubber and r is the 
void radius [3, 8]. However, attention is focused here 
on another restraint on cavitation: the need for a crit- 
ical amount of mechanical energy to be released by 
propagation of a tear. 

According to Griffith's fracture criterion [9], no 
tearing will take place unless sufficient energy is re- 
leased to meet the requirements for fracture. As shown 
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below, when this criterion is applied to a simple model 
of a precursor void it leads to the conclusion that 
voids smaller than a certain size will not release 
enough strain energy to grow by tearing, even when 
the "critical" stress, 5E/6, is attained, and therefore 
they will not develop into large internal cracks at this 
stress. In fact, we conclude that they will not tear open 
at any level of strain, however high, provided that 
Equation 1 applies. 

In view of the fact that internal cracks do appear at 
sufficiently high stresses, it is necessary to modify the 
elastic solution, Equation 1, to take into account the 
departure of rubber-like mal~erials from the simple 
kinetic theory of rubber-like elasticity at large defor- 
mations. A number of other elastic relations for ex- 
pansion of a spherical cavity have been considered by 
Chou-Wang and Horgan [10], but they did not em- 
ploy Griffith's criterion for fracture. A simple empir- 
ical relation for the elastic behaviour of rubber at large 
deformations is used here to derive the elastic energy 
released by growth of a cavity, and hence the condi- 
tions for formation of internal cracks by the expansion 
of small voids. 

Griffith's fracture criterion was applied to this prob- 
lem several years ago E11]. The results obtained in the 
first part of this paper are similar, with small but 
significant differences that are attributed to a different 
method of evaluating the rate of release of strain 
energy as the initial Crack grows. Thus, the first part of 
the present discussion corroborates this earlier study, 
at least in a semi-quantitative way. It leads to a recon- 
sideration of the elastic behaviour at high strains, as 
discussed in the second part, in order to understand 
the mechanism of growth of very small cracks. 

2. Energy requirements 
for void growth 

We first express Equation 1 in terms of the volume 
V and Vo of the void in the inflated and uninflated 
state, where 

k 3 = V/Vo (2) 

Strain energy W stored in the material is given by 

f/ W = P dV (3) 
o 

This result must now be expressed in terms of the area, 
A, of a hypothetical crack, so that the rate c~ W/OA of 
release of energy as the crack grows can be evaluated. 
Griffith's fracture criterion then takes the form 

-- (OW/~3A)Iv >_ Gc (4) 

where Gc is the fracture energy of the material per unit 
area torn through. In order to carry out this calcu- 
lation, we assume that the initial void consisted of 
a planar circular crack of radius to, which became 
inflated into an initial spherical void of the same 
radius ro under a negligibly small initial pressure or 
stress, before further expansion to a volume V under 
pressure P. The initial void volume Vo is thus given by 

Vo = 4rtr3/3 (5) 

and the crack area A is 

A = nrZo (6) 

Griffith's fracture criterion, Equation 4, then becomes 

)~4(e/c~L) L -3 (P/E) L 2 d)~ >_ Gc/2roE (7) 
1 

Denoting the left-hand side of Equation 7 by F(k), the 
condition for growth of the initial crack is then 

F(L) >_ Gc/2roE (8) 

For  a material obeying the pressure-inflation relation 
given in Equation 1, F(k) is obtained from Equation 
7 as 

F(k) = (1 + )~2 _ 2k-1)/3 (9) 

This result may be compared with that obtained by 
Williams and Schapery [11]: 

F(~.) = (2k 2 + k -4 - 3)/12 (10) 

assuming that the extension ratio k does not change as 
the crack increases in size. This assumption, and hence 
Equation 10, is thought to be incorrect. Note also that 
Equation 10 predicts crack growth at a value of k of 
less than unity, that is, at a sufficiently large compress- 
ive deformation, and this seems inherently unlikely. 
However, the two results are qualitatively similar for 
positive pressures and lead to the same general con- 
clusions. Equations 7 and 9 are employed hereafter. 

These equations give a necessary condition for 
growth of an initial crack by tearing, which however is 
unlikely to be met for small cracks. For example, on 
putting Gc = 100 J m-a,  a rather small value for rub- 
ber, and E = 2 MPa, a typical value, Equations 8 and 
9 are satisfied only for cracks having a radius of 1 pm 
or larger, even when the maximum elastic expansion 
ratio of the cavity (before tearing) is given the rather 
large value of 10 • . Thus, cavities of much smaller 
size than" this, say of the order of 0.1 lam in radius, 
could not be made to tear open by internal pressure or 
external triaxial stress according to Equations 8 and 9, 
for any reasonable value of the elastic expansion 
ratio k: 

The reason for this anomaly is clear. Equation 1, 
upon which Equation 9 is based, was derived for 
particularly simple elastic materials that obey the kin- 
etic theory of rubber-like elasticity. But real materials 
cease to follow this theory at high strains, near the 
point of rupture. Instead, they develop much higher 
stresses than predicted. In order to treat fractures 
initiated by small cavities, it is thus necessary to mod- 
ify Equation 1 to take these departures at high exten- 
sion ratios into account. This is attempted in an 
approximate way in the following section. 

3. Energy release rates at large 
expansion ratios 

Equation 1 is based on the simple kinetic-theory rela- 
tion between stress t and extension ratio k for rubber 
in equi-biaxial extension [12]: 

tiE = (k 2 -- L-4)/3 (11) 
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We now consider the effect of an additional (empirical) 
term At/E on the right-hand side of Equation 11 that 
describes, at least to a first approximation, the increas- 
ing stiffness of rubber at large strains. Such an addi- 
tional stress must satisfy the following conditions: 

(i) A t = O w h e n E = l  
(ii) At/E(X - 1) = 0 when X = 1 
(iii) At becomes extremely large when  X = Era, 

where X,, is a limiting extension ratio. 
A simple relation consistent with these require- 

ments is 

At = k ( k -  1)2/(Zm - 1)(E m - -E)  (12) 

where k is a new elastic constant describing the beha- 
viour at large strains. For simplicity, k is assumed later 
to be equal to E, although both the form of the 
relation for additional stress and the magnitude of the 
corresponding elastic constant are, in principle, ob- 
tainable by experiment. 

Equation 12 leads to an extra term on the right- 
hand side of Equation 1 for inflation pressure: 

AP/4k(Em - 1) = Aln[(Xm - l)/(Em - E)] 

+ Bln[(X 2 + E + 1)/3] 

+ (2/3t/2)(C - B) 

[tan -1 {(2E + 1)/31/2} 

- tan-13 l/z] + D i n e  (13) 

where A = (Era - 1)/[Era(Ezra + Z,m + 1)] 

B = (Em + 2)/2(E~ + km + 1) 

C = (2Em + 1)/(E 2 + E m  + 1) 

D = - l / k  m 

This relation for AP leads in turn to an extra term 
AF(E) on the right-hand side of Equation 9 for F(X), 
given by 

AF(E)/4(Em - 1) = - (X - 1) + Ak3mln 

E(Em -- 1)/(E m -- E)] 

- Bln3 + (B/3)ln(E 6 + 3E 5 

+ 6E 4 + 7E 3 + 6E 2 + 3X 

-[- 1) --[- (~2 q_ ~'m -[- 1) -1  

{ 3 t / 2 k m t a n - l E ( 2 k  + 1)/ 

31/21 - (rC/31/Z)Xm} (14) 

The predictions of Equations 1, 9, 13 and 14 for the 
critical extension ratio kc and corresponding pressure 
Pc are shown in Figs 2 and 3 as functions of reduced 
crack size: roE/Gr For these illustrative calculations 
the elastic constant k has been given the value E and 
the limiting extension ratio Xm has been assumed to be 
10. 

When the crack radius is small, less than IO-4Gc/E, 
then the calculated extension ratio Xo is close to the 
maximum possible value Xm, Fig. 2. Under these cir- 
cumstances the present empirical stress-strain rela- 
tion, Equation 12, is unlikely to be valid and the 
values deduced for Pc, shown in Fig. 3, will be quite 
inexact. On the other hand, when the crack radius is 
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Figure 2 Calculated relation between the critical extension ratio 
Xc for tearing open at the surface of a spherical cavity and the initial 
radius ro of the crack. 
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Figure3 Calculated relations between critical pressure Pc and 
radius ro of a circular crack, sealed with respect to the fracture 
energy Gc and modulus E of elfi.sticity in tension. The full line is from 
Equations 1, 9, 13 and 14. Corresponding values of extension ratio 
Xc at the surface of the cavity are given. The dotted line is from 
Equation 15, valid for small extensions. The horizontal broken line 
denotes Pc = 5E/6. 

greater than about Go~E, then the calculated extension 
ratio is quite small, less than ~ 1.2. Neglect of the 
pressure and strain energy involved in inflating the 
initial crack into a spherical cavity is then obviously 
incorrect. We expect, therefore, that the present ana- 
lysis will hold only over an intermediate range: 
10 -4 ~< roE/Go <~ 1. 

Results obtained from Equations 1, 9, 13 and 14 are 
shown as a full curve in Fig. 3. The asymptotic pres- 
sure of 5E/6 from Equation 1 is represented by the 
horizontal broken line. It is clear that the additional 
empirical stress function has permitted higher critical 
pressures than this to be reached for a wide range of 
crack sizes. But, even when extensions close to the 
maximum possible value '~m are required to cause 
crack growth, when the initial radius of the crack is 
relatively small, the predicted critical pressure is not 
particularly high, only about three times that pre- 
dicted by Equation 1. We conclude that the critical 
pressure for crack growth is of order E for a wide 
range o1' crack sizes, from about 1 x 10 -4 Gc/E to 
about Gc/E. 



For small deformations, assuming linear elasticity, 
the critical pressure is given by [13] 

Pc/E = (3roE/1tGc) -1/2 (15) 

This relation, represented by the dotted curve in 
Fig. 3, will hold for cracks of large initial radius, 
roE/Go > 1, when the deformations required for crack 
propagation are relatively small and the crack is never 
inflated into a spherical void. 

4. Conclusions 
An energy criterion has been applied to find the condi- 
tions for propagation of a pressurized crack in a 
highly elastic material. The critical internal pressure 
Pc is found to depend strongly upon the initial radius 
of the crack, as pointed out earlier by Williams and 
Schapery [11]. This conclusion is different from a pre- 
vious one, based upon the concept of a critical (large) 
deformation for fracture, that sufficiently large cracks 
will tear open at a pressure of 5E/6, independent of 
crack size (2-7). 

However, the new analysis, also based on the kinetic 
theory of rubber-like elasticity, does not account for 
the tearing open of small cracks. Instead, it predicts 
that the required strains will become unreasonably 
large. This difficulty has been overcome by employing 
an empirical stress-strain relation, consistent with the 
kinetic theory of rubber elasticity at low and moderate 
strains, but giving extremely high stresses when a lim- 
iting strain is approached. In this way, values of 
Pc have been calculated for a wide range of crack sizes, 
using an energy criterion for fracture. They are found 
to lie in the relatively narrow range, 3E to E, for crack 
radii ranging from 5 x IO-4Ge/E to Gc/E. For con- 
ventional rubbery materials, this corresponds to radii 
ranging from about 0.5 gm to about 1 mm. Below this 
range, the detailed form of the stress-strain relation at 

high stresses becomes important: no general con- 
clusion can be drawn. And for larger cracks than this 
the simple Griffith result, Equation 15, applies. 
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